
Direct methods for solving linear systems: 

   Linear systems of equations are associated with many 

problems in engineering and science, as well as with 

applications of mathematics to the social sciences. 
 

Direct techniques are considered to  solve the 

linear system: 
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for                           given the          for each (i,j=1,2,…,n)  

direct techniques are methods that give an answer in a 

fixed number of steps subject only to rounding errors. 

Linear systems of equations: 

Example(1): Consider the four equations 
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   Will be solved for the unknowns                            the first 

step is to use equation (1) to eliminate the unknown      

from equations. (2),(3), and (4) by performing (2)-

2(1),(3)-3(1), and (4)+(1) the resulting system is 
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 Where the new equations are labeled                                 in 

this system         is used to eliminate       from                        

by the operations                                                   resulting in 

the system 
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The system now in reduced form and can easily be solved for the unknowns by 
a backward substitution process noting that              

the solution is therefore 

 

Definition: 
 An (mxn) matrix is a rectangular array of elements with n rows and m columns 
in which not only is the value of an element important but also its position in the 
array. 

 

                                  
 

 

 

 

 

 

 

 

An (n+1)* n matrix can be used to represent the linear system. 
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by first constructing 

 

 

 

 and then combining these matrices to form the augmented matrix: 
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 Where the broken line is used to separate the coefficients of 
the unknowns from the values on the right-hand side of the 
equations.  

Now, repeating the operations involved in Example(1): In 
considering first the augmented matrix associated with the 
system 
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Performing the operations associated with (2) -2(1), (3) -3(1) 

and (4) +(1) is accomplished by manipulating the respective 

rows of the augmented matrix * which becomes  

the matrix   
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Performing the final manipulation results in the augmented  

matrix  



This matrix can now be transformed into its  correspond linear  

system and solutions for                          obtained 

the procedure involved in this process is called 

(Gaussian elimination with backward substitution.)  
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)Gaussian Elimination:1 

  The general form applied to the linear system  



the resulting matrix will be 
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The backward substitution can be performed solving the (nth) 

equation for        

gives  
 

solving the (n-1)st equation for            and using        yields   
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 elimination method: solve the linear system using the Example: 
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Performing backward substitution  
 arbitrary and  

 there is no unique solution. 



solve the linear system using the elimination method:Example:  
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Row interchange necessary: Solution: 
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the difficulty of Gaussian method is that some time you have to  Note: 
interchange rows and some times you will not have a unique answer to the 

solution.  



)Direct Factorization Methods:2 

 In the Gaussian elimination method, the system was 

reduced to a triangular form and then solved by back 

substitution. It is much easier to solve triangular systems, let 

us exploit this idea and assume that a given (N*N) matrix (A) 

can be written as a product of two matrices (L) and (U) so 

 that  )1( LUA

where L is an NxN lower- triangular matrix and U is an (NxN) 

upper-triangular matrix. The factorization in (1) is called an 

LU decomposition of A. then Ax=b is equivalent 



To                    . further                      decomposes into two 

triangular systems                                         both systems are 

triangular and therefore easy to solve. What we need is a 

procedure to generate factorization. 

Theorem: 

 Let A be an NxN matrix. If det               for K=1,2,…,N -1 

(Gaussian elimination can be carried out without row 

interchanges). Then there exists a unique lower-triangular 

matrix L with  
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and a unique upper-triangular matrix U such that                  

so, far we used             in L. if we require L and U to be lower 

and upper-triangular matrices then we can select L and U in 

many ways. Let us consider a 4x4 matrix 
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Then the factors of A are given by (assuming it is factorable)  )3(
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We have 16 Known elements for A in equation (2) and 20 

unknowns for L and U in equations (3) and (4). For a unique 

solution of a system having 20 unknowns, we need 20 

equations while we have 16 equations since                  . So we 

specify four additional conditions on the unknowns in the 

known ways:-following well 
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1) Crouts method: let  

2)Doolittle's method: let  
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Comparing each element of the first column and first row equation (5) we get : 
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Comparing the last three elements of the second column  
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Now, let us consider crouts method. In this method we want 



 Comparing the last two elements of the second row 
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The comparison of the last two elements of the third row yields  
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 The comparison of the last element of the third row yields  

 

 

 

 

 

 Similarly , the last element of the Fourth column.   
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yields                                                                                                                  

,…,N. the elements of the decomposition matrices L and U of an 2,1for K= In general:

NxN matrix A are given by:   
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similarly, for K=1,2,…,N the elements of the decomposition matrices L and U  

: are given by the Doolittle methodsof an NxN matrix A by  
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The solution of the system of equations                            is given by 
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Using the Crout factorization method, solveExample:  

54

142

7324

321

321

321







xxx

xxx

xxx

bLy 



 First let us find L and U such that Solution: 
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we want to solve  
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Now we have to solve  yUx 
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Homework: 

1)solve the linear system using Gaussian Elimination:  

     2)Solve the linear system using an LU decomposition: 



 Iterative Methods For Systems of Equations: 

) The Jacobi Method:1 

  Consider a linear System                   given by    bAx 
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Solve the first equation for       the Second equation for            and So forth. 

then  
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  The System Can be Written as 
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 The entire Sequence of Jacobi iterates is defined from (1) as 
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equation (2) is easy to program for Computation  

 It is useful to Write equation  (2) in matrix-Vector notation 

 To study the convergence of the Jacobi Method  
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 Where L.D. and U are the Strictly lower, diagonal  

 And Strictly upper triangular parts of A 

 The equation                       , which is 

 Can be written as  

   

  

This reduces to  
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And sequence of iterates is given by 
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  Using          (1) Jacobi method 

 (2) Express the System in the forms of                                             

equation (3)  ?  

 Solution: 

Solving the first equation for      and the Second for  1x 2x
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 (i) the Jacobi iterates 
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 Not Converging  

 (ii) We have 
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 Our Next question is to determine the Condition for Which the Sequence will 

Converges to the Solution of a system. 

 We need to know first of all: 
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Theorem: 

 Let A be a strictly diagonally dominant matrix. 

 Then the Jacobi and Gauss-Seidel iterations Converge to the unique 

solution of                           for any  bAx 
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Convergence of the Jacobi Methods: 
for  Jacobi to converge 
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i.e the eignvalues  1i
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Consider the linear System:  EXAMPLE: 
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 The Jacobi matrix is  
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To work an inverse matrix using ad-joint method: 
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Sidel Method: -) Gauss2 

   We rewrite equation (1) as 
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from the above equation (4) the Gauss-Seidel iteration Sequence can be 

defined as  
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Each updated component  

Is used in the calculation of the next Component and therefore, for computer 

calculation, the new value can be immediately stored at the location where the old 

value was stored this reduces the number of necessary locations 
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 In matrix notation: 
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solve    EXAMPLE: 
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 Using  

  (i) the Gauss-Seidel Method  

  (ii) Express the System in the form of * equation   

 Solution:  

 The Gauss Seidel iterations are given by 
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 It is diverging. 

 Seidel Method-Convergence of the Gauss  

 For Convergence 
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EXAMPLE:   Consider the linear System. 

in this caseSolution  
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The Gauss-Seidel Matrix is 
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Approximation Theory: 

Squares approximation : –Discrete Least   

 So far we discussed the techniques to compute      of a given linear 

System                   where A is a Square matrix. If A is nonsingular, 

then there exists a unique solution. In this section, we turn our 

attention to a system of m equations in n unknowns where  nm 

x
bAx 

Thus if A has m rows and n columns, then       is a vector with n 

components and b is a vector with m components. If m>n. then we 

have more equations than unknowns. Such systems are usually over 

determined. 

Over determined systems do arise in practice and need to be solved. 
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One possibility is to determine        , and          from apart of equation (1)  

 by ignoring the rest. However Since the data comes from the same source. It is 

difficult to know which equations contain large errors.  

Thus we can not Justify determining      and      from apart of equation (1) by 

ignoring the rest. 

0a 1a
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It seems reasonable to choose       and      Such that the average error 

in these six equations is minimum. 

There are many ways to define this average error. 

But the most convenient and often used is the sum of squares.  
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 We wish to find             for which          is minimum  

 least square solution ofWhich is called a    
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 It can be shown that  

Substituting equation (2) in (1) gives  
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 The system of equation is                    

 

Substituting                             in equation 

(3) we get   
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which is called a normal equation  
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Many times an over determined system arises 

when we try to find a0 and a1 such that y=a0 +a1 x is  

the least squares to fit to the of data given in table. 
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For each pair   ii yx , the equation  

ii xaay 10  should hold.  
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 The normal equation: 

Which can be simplifies to 
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A`A in equation (4) is symmetric solving equation (4) for  0a and  1a



We get  

Example: 
Using the least squares method find the linear polynomial that fits the 

following data: 
















































    

2

1

2

1

111

2

1

0

i

N

i

i

N

i

i

N

i

ii

N

i

N

i

i

N

i

i

xxN

xyxxy

a
























































     

2

1

2

1

111

1

i

N

i

i

N

i

i

N

i

N

i

i

N

i

ii

xxN

xyyxN

a

213

101





i

i

y

x



Example: 
The experimental data points given below indicate a curve having the form : 

 Solution: xaay 10 
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 Determine the least square fit of this of function to the data  ? 
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 Example: The experimental data points given below 

 indicate a curve having the form: 

 Determine the least square fit of this function to the data? 

Solution: 
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 We could use a polynomial of degree M given by  
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Where the coefficient  Maaa ,.....,, 10

are to be determined to fit a given set of data points  
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The least squares solution of (2) is given by  
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 Fit the data below with the least squares polynomial of degree two 
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Home work: 
1) using the least squares method, find the linear polynomials that fits 

the following data. 
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2) Using the least squares method, Find the quadratic polynomial that fits the following 

data : 
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 Orthogonal polynomials and least squares approximation 
suppose   baCf ,

and that polynomial of degree at most  nPn, is required that will minimize  
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The problem is to find real coefficients                    that 

Will minimize E from the calculus of   functions of several variables, a 

necessary condition for the number naa ,,0 

to minimize E is that  
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Hence in order to find        ,the linear equations 

 

 

 

Must be solved for the (n+1) unknowns  nja j ,,1,0, 
These equations are called the normal equations it can be shown that the 

normal equations always have a unique solution provided  

  ba     ,  andbaCf

squares approximating polynomial of degree two for  –Find the least   Example:

the function  on the interval   1,0

 The normal equations forSolution: 2
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Performing the integrations yields 

Solving the equations together to obtain  
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Eigen values and eigenvectors: 

The power method: 

Let A be an NxN matrix with eigenvalues  N ,,, 21 

such that  N   321

Assume that A has N linearly independent eigenvectors  NVVV ,,, 21 

associated with each of these eigenvalues since  NVVV ,,, 21 

form a basis of  NR , we can express any given vector               as   0x
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 Where  

N ,,, 21  are constants. Multiplying both 

sides of the equation by A gives 
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Inductively, for any positive integer K: 
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For any given vector   0x we generate the sequence given by 
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Equation (1) may not be a practical sequence to compute the  

 

dominant eigenvalue. 

 

It is desirable to keep             within computational limits by scaling  
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 Multiplying equation (3) by A yields   
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 Using equation (4) in (5) we get  
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