Direct methods for solving linear systems:

Linear systems of equations are associated with many problems in engineering and science, as well as with applications of mathematics to the social sciences.

Direct techniques are considered to solve the

 linear system:$$
\begin{array}{lll}
a_{1.1} & x_{1}+a_{1.2} & x_{2}+\cdots+a_{1 . n} \\
x_{n}=b_{1} \\
a_{2.1} & x_{1}+a_{2.2} & x_{2}+\cdots+a_{2 . n} \\
x_{n}=b_{2} \\
\vdots & & \\
a_{n .1} & x_{1}+a_{n .2} & x_{2}+\cdots+a_{n . n} \\
x_{n}=b_{n}
\end{array}
$$

for $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots ., \boldsymbol{X}_{n g \text { given the }} a_{i . j \text { for each (i,j=1,2, } \ldots, \mathrm{n})}$ direct techniques are methods that give an answer in a fixed number of steps subject only to rounding errors.

Linear systems of equations:

Example(1): Consider the four equations

$$
\begin{aligned}
& x_{1}+x_{2}+3 x_{4}=4 \rightarrow(1) \\
& 2 x_{1}+x_{2}-x_{3}+x_{4}=1 \rightarrow(2) \\
& 3 x_{1}-x_{2}-x_{3}+2 x_{4}=-3 \rightarrow(3) \\
& -x_{1}+2 x_{2}+3 x_{3}-x_{4}=4 \rightarrow(4)
\end{aligned}
$$

Will be solved for the unknowns x_{1}, x_{2}, x_{3}, and x_{4} the first step is to use equation (1) to eliminate the unknown X_{1} from equations. (2),(3), and (4) by performing (2)-$2(1),(3)-3(1)$, and (4)+(1) the resulting system is

$$
\begin{aligned}
& x_{1}+x_{2}+3 x_{4}=4 \rightarrow\left(1^{\prime}\right) \\
& -x_{2}-x_{3}-5 x_{4}=-7 \rightarrow\left(2^{\prime}\right) \\
& -4 x_{2}-x_{3}-7 x_{4}=-15 \rightarrow\left(3^{\prime}\right) \\
& 3 x_{2}+3 x_{3}+2 x_{4}=8 \rightarrow\left(4^{\prime}\right)
\end{aligned}
$$

Where the new equations are labeled $\left(1^{\top}\right),\left(2^{\top}\right),\left(3^{\prime}\right),\left(4^{\top}\right)$ in this system $\left(2^{\wedge}\right)$ is used to eliminate X_{2} from $\left(3^{\wedge}\right)$, and $\left(4^{\wedge}\right)$ by the operations $\left(3^{\prime}\right)-4\left(2^{\prime}\right)$ and $\left(4^{\prime}\right)+3\left(2^{\prime}\right)$ resulting in the system

$$
\begin{aligned}
& x_{1}+x_{2}+3 x_{4}=4 \\
& -x_{2}-x_{3}-5 x_{4}=-7 \\
& 3 x_{3}+13 x_{4}=13 \\
& -13 x_{4}=-13
\end{aligned}
$$

The system now in reduced form and can easily be solved for the unknowns by a backward substitution process noting that $x_{4}=1$ the solution is therefore

$$
x_{1}=-1, x_{2}=2, x_{3}=0, \text { and } x_{4}=1
$$

Definition:

An (mxn) matrix is a rectangular array of elements with n rows and m columns in which not only is the value of an element important but also its position in the array.

$$
A=\left(a_{i, j}\right)=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n m}
\end{array}\right)
$$

An $(n+1)^{*} n$ matrix can be used to represent the linear system.

$$
\begin{aligned}
& a_{1.1} x_{1}+a_{1.2} x_{2}+\cdots+a_{1 . n} x_{n}=b_{1} \\
& a_{2.1} x_{1}+a_{2.2} x_{2}+\cdots+a_{2 . n} x_{n}=b_{2} \\
& a_{n .1} x_{1}+a_{n .2} x_{2}+\cdots+a_{n . n} x_{n}=b_{n} \\
& \text { by first constructing } A=\left[\begin{array}{llll}
a_{1.1} & a_{1.2} & \cdots & a_{1 . n} \\
a_{2.1} & a_{2.2} & \cdots & a_{2 . n} \\
\vdots & & & \vdots \\
a_{n .1} & & & \\
n .1 & \cdots & a_{n, n}
\end{array}\right] \text { and } \quad b=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
\end{aligned}
$$

and then combining these matrices to form the augmented matrix:

$$
A=\left[\begin{array}{llll||l}
a_{1.1} & a_{1.2} & \cdots & a_{1 . n} & b_{1} \\
a_{2.1} & a_{2.2} & \cdots & a_{2 . n} & b_{2} \\
\vdots & & & \vdots & \vdots \\
a_{n .1} & a_{n .1} & \cdots & a_{n . n} & b_{2}
\end{array}\right]
$$

Where the broken line is used to separate the coefficients of the unknowns from the values on the right-hand side of the equations.
Now, repeating the operations involved in Example(1): In considering first the augmented matrix associated with the system

$$
\left[\begin{array}{cccc||c}
1 & 1 & 0 & 3 & 4 \\
2 & 1 & -1 & 1 & 1 \\
3 & -1 & -1 & 2 & -3 \\
-1 & 2 & 3 & -1 & 4
\end{array}\right] \rightarrow
$$

Performing the operations associated with (2) $-2(1),(3)-3(1)$ and $(4)+(1)$ is accomplished by manipulating the respective rows of the augmented matrix * which becomes
the matrix $\left[\begin{array}{cccc||l}1 & 1 & 0 & 3 & 4 \\ 0 & -1 & -1 & -5 & -7 \\ 0 & -4 & -1 & -7 & -15 \\ 0 & 3 & 3 & 2 & 8\end{array}\right]$

Performing the final manipulation results in the augmented matrix

$$
\left[\begin{array}{rrrr||c}
1 & 1 & 0 & 3 & 4 \\
0 & -1 & -1 & 5 & -7 \\
0 & 0 & 3 & 13 & 13 \\
0 & 0 & 0 & -13 & -13
\end{array}\right]
$$

This matrix can now be transformed intp its correspond linear system and solutions for $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ obtained the procedure involved in this process is called (Gaussian elimination with backward substitution.)

1)Gaussian Elimination:

The general form applied to the linear system

$$
\begin{aligned}
& a_{1.1} x_{1}+a_{1.2} x_{2}+\cdots+a_{1 . n} x_{n}=b_{1} \\
& a_{2.1} x_{1}+a_{2.2} x_{2}+\cdots+a_{2 . n} x_{n}=b_{2}
\end{aligned}
$$

$$
a_{n .1} x_{1}+a_{n .2} x_{2}+\cdots+a_{n . n} x_{n}=b_{n}
$$

$$
A=[A, b]=\left[\begin{array}{llll||l}
a_{1.1} & a_{1.2} & \cdots & a_{1 . n} & a_{1 . n+1} \\
a_{2.1} & a_{2.2} & \cdots & a_{2 . n} & a_{2 . n+1} \\
\vdots & & & \vdots & \vdots \\
a_{n .1} & a_{n .1} & \cdots & a_{n . n} & a_{n . n+1}
\end{array}\right]
$$

the resulting matrix will be

$$
\tilde{\tilde{A}}=\left[\begin{array}{cccc||c}
a_{1.1} & a_{1.2} & \cdots & a_{1 . n} & a_{1 . n+1} \\
0 & a_{2.2} & \cdots & a_{2 . n} & a_{2 . n+1} \\
\vdots & \ddots & \ddots & \vdots & \vdots \\
0 & \cdots & 0 & a_{n . n} & a_{n . n+1}
\end{array}\right]
$$

The backward substitution can be performed solving the ($\mathrm{n}^{\text {th }}$) equation for $\left(X_{n}\right)$
gives

$$
\left(X_{n}=\frac{a_{n, n+1}}{a_{n, n}}\right)
$$

solving the ($\mathrm{n}-1$) st equation for $\left(x_{n-1}\right)$ and using $\left(x_{n}\right)$ yields

$$
\left[x_{n-1}=\frac{\left(a_{n-1, n+1}+a_{n-1, n} x_{n}\right)}{a_{n-1, n-1}}\right]
$$

and continuing this process we obtain

$$
x_{i}=\left(\frac{a_{i, n+1}-a_{i, n} x_{n}-a_{i, n-1} x_{n-1}-\cdots-a_{i, i+1} x_{i+1}}{a_{i, i}}\right)=\frac{\left(a_{i, n+1} \sum_{j=i+1}^{n} a_{i, j} x_{j}\right)}{a_{i, i}}
$$

for each $\quad(i=n-1, n-2, \cdots, 2,1)$

Example: solve the linear system using the elimination method:

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}+x_{4}=7 \\
& x_{1}+x_{2}+2 x_{4}=8 \\
& 2 x_{1}+2 x_{2}+3 x_{3}=10 \\
& -x_{1}-x_{2}-2 x_{3}+2 x_{4}=0
\end{aligned}
$$

$$
A=[A, b]=\left[\begin{array}{llll||l}
1 & 1 & 1 & 1 & 7 \\
1 & 1 & 0 & 2 & 8 \\
2 & 2 & 3 & 0 & 10 \\
-1 & -1 & -2 & 2 & 0
\end{array}\right]=\left[\begin{array}{cccc||c}
1 & 1 & 1 & 1 & 7 \\
0 & 0 & -1 & 1 & 1 \\
0 & 0 & 1 & -2 & -4 \\
0 & 0 & -1 & 3 & 7
\end{array}\right]=\left[\begin{array}{llll||l}
1 & 1 & 1 & 1 & 7 \\
0 & 0 & -1 & 1 & 1 \\
0 & 0 & 1 & -2 & -4 \\
0 & 0 & 0 & 1 & 3
\end{array}\right]
$$

Performing backward substitution $x_{4}=3, x_{3}-2 x_{4}=-4, \quad \therefore x_{3}=2\left(x_{2}\right)$ arbitrary and $x_{1}=-2-x_{2}$ there is no unique solution.

Example: solve the linear system using the elimination method:

$$
\begin{aligned}
& x_{1}-x_{2}+3 x_{3}=2 \\
& 3 x_{1}-3 x_{2}+x_{3}=-1 \\
& x_{1}+x_{2}=3
\end{aligned}
$$

Solution: Row interchange necessary:

$$
\begin{aligned}
& \therefore \tilde{\tilde{A}}=[A, b]=\left[\left.\begin{array}{ccc||c}
1 & -1 & 3 & 2 \\
1 & 1 & 0 & 3 \\
3 & -3 & 1
\end{array} \right\rvert\,-1\right]=\left[\left.\begin{array}{ccc|c}
1 & -1 & 3 & 2 \\
0 & 2 & -3 & 1 \\
0 & 0 & -8
\end{array} \right\rvert\,-7\right] \quad x_{3}=\frac{7}{8}=0.875 . \\
& 2 x_{2}-3 x_{3}=1, \therefore x_{2}=1.18125 . \\
& x_{1}-x_{2}+3 x_{3}=2 \quad \therefore x_{1}=1.1875 .
\end{aligned}
$$

Note: the difficulty of Gaussian method is that some time you have to interchange rows and some times you will not have a unique answer to the solution.

2)Direct Factorization Methods:

In the Gaussian elimination method, the system was reduced to a triangular form and then solved by back substitution. It is much easier to solve triangular systems, let us exploit this idea and assume that a given $\left(\mathrm{N}^{*} \mathrm{~N}\right)$ matrix (A) can be written as a product of two matrices (L) and (U) so that

$$
A=L U \rightarrow(1)
$$

where L is an $N x N$ lower- triangular matrix and U is an (NxN) upper-triangular matrix. The factorization in (1) is called an LU decomposition of A . then $\mathrm{Ax}=\mathrm{b}$ is equivalent

To $L U x=b$. further $L(U x)=b$ decomposes into two triangular systems $U x=y$ and $L y=b$ both systems are triangular and therefore easy to solve. What we need is a procedure to generate factorization.

Theorem:

Let A be an NxN matrix. If det $\left(A_{k}\right) \neq 0$ for $\mathrm{K}=1,2, \ldots, \mathrm{~N}-1$ (Gaussian elimination can be carried out without row interchanges). Then there exists a unique lower-triangular matrix L with $l_{1.1}=1$
and a unique upper-triangular matrix U such that $L U=A$ so, far we used $l_{1.1}=1 \mathrm{in} \mathrm{L}$. if we require L and U to be lower and upper-triangular matrices then we can select L and U in many ways. Let us consider a 4×4 matrix

$$
A=\left[\begin{array}{llll}
a_{1.1} & a_{1.2} & a_{1.3} & a_{1.4} \tag{2}\\
a_{2.1} & a_{2.2} & a_{2.3} & a_{2.4} \\
a_{3.1} & a_{3.2} & a_{3.3} & a_{3.4} \\
a_{4.1} & a_{4.2} & a_{4.3} & a_{4.4}
\end{array}\right] \rightarrow
$$

Then the factors of A are given by (assuming it is factorable)

$$
L=\left[\begin{array}{llll}
l_{1.1} & 0 & 0 & 0 \\
l_{2.1} & l_{2.2} & 0 & 0 \\
l_{3.1} & l_{3.2} & l_{3.3} & 0 \\
l_{4.1} & l_{4.2} & l_{4.3} & l_{4.4}
\end{array}\right] \rightarrow(3)
$$

and $\quad U=\left[\begin{array}{llll}u_{1.1} & u_{1.2} & u_{1.3} & u_{1.4} \\ 0 & u_{2.2} & u_{2.3} & u_{2.4} \\ 0 & 0 & u_{3.3} & u_{3.4} \\ 0 & 0 & 0 & u_{4.4}\end{array}\right] \rightarrow(4)$
We have 16 Known elements for A in equation (2) and 20 unknowns for L and U in equations (3) and (4). For a unique solution of a system having 20 unknowns, we need 20 equations while we have 16 equations since $L U=A$. So we specify four additional conditions on the unknowns in the following well-known ways:

1) Crouts method: let $u_{1.1}=u_{2,2}=u_{3.3}=u_{4,4}=1$
2)Doolittle's method: let $l_{1.1}=l_{2,2}=l_{3,3}=l_{4,4}=1$

Now, let us consider crouts method. In this method we want

$$
\begin{aligned}
& {\left[\begin{array}{llll}
a_{1,1} & a_{1,2} & a_{1.3} & a_{1.4} \\
a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} \\
a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} \\
a_{4,1} & a_{4,2} & a_{4,3} & a_{4,4}
\end{array}\right]=\left[\begin{array}{cccc}
l_{1.1} & 0 & 0 & 0 \\
l_{2.1} & l_{2.2} & 0 & 0 \\
l_{3.1} & l_{3,2} & l_{3,3} & 0 \\
l_{4,1} & l_{4,2} & l_{4,3} & l_{4,4}
\end{array}\right]\left[\begin{array}{cccc}
1 & u_{1.2} & u_{1,3} & u_{1,4} \\
0 & 1 & u_{2,3} & u_{2,4} \\
0 & 0 & 1 & u_{3,4} \\
0 & 0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

Comparing each element of the first column and first row equation (5) we get :

$$
l_{i .1}=a_{i .1} \quad \text { for } \quad i=1,2,3 \text { and } 4 \quad u_{1 . j}=\frac{a_{1 . j}}{l_{1.1}} \quad \text { for } j=2,3 \quad \text { and } 4
$$

Comparing the last three elements of the second column

$$
l_{i .2}=-l_{i .1} u_{1.2}+a_{i .2} \quad \text { for } \quad i=, 2,3 \text { and } 4
$$

Comparing the last two elements of the second row

$$
l_{2.1} u_{1.3}+l_{2.2} u_{2.3}=a_{2.3} \text { and } l_{2.1} u_{1.4}+l_{2.2} u_{2.4}=a_{2.4} \quad \text { therefore }
$$

$$
u_{2 . i}=\frac{u_{2.1}-l_{2.1} u_{1 . i}}{l_{2.2}} \quad \text { For } \quad i=3,4
$$

The comparison of the last two elements of the third row yields

$$
l_{3.1} u_{1.3}+l_{3.2} u_{2.3}+l_{3.3}=a_{3.3} \text { and } l_{4.1} u_{1.3}+l_{4.2} u_{2.3}+l_{4.3}=a_{4.3}
$$

therefore $\quad l_{i .3}=a_{i .3}-l_{i .1} u_{1.3}-l_{i .2} u_{2.3}$ for $i=3.4$
The comparison of the last element of the third row yields

$$
u_{3.4}=\frac{a_{3.4}-l_{3.1} u_{1.4}+l_{3.2} u_{2.4}}{l_{3.3}}
$$

Similarly, the last element of the Fourth column.
yields $\quad l_{4.4}=a_{4.4}-l_{4.1} u_{1.4}-l_{4.2} u_{2.4}-l_{4.3} u_{3.4}$
In general: for $K=1,2, \ldots, N$. the elements of the decomposition matrices L and U of an NxN matrix A are given by:

$$
\begin{aligned}
& u_{k k}=1 \\
& l_{i . k}=a_{i . k}-\sum_{m=1}^{k-1} l_{i . m} U_{m k} \quad \text { for } i=k, k+1, \cdots, N \\
& u_{k j}=\frac{1}{l_{k k}}\left[a_{k j}-\sum_{m=1}^{k-1} l_{k m} u_{m j}\right] \text { for } \quad j=k+1, k+2, \ldots, N
\end{aligned}
$$

similarly, for $K=1,2, \ldots, N$ the elements of the decomposition matrices L and U of an NxN matrix A by the Doolittle methods are given by:

$$
\begin{aligned}
& l_{k k}=1 \\
& u_{k j}=a_{k j}-\sum_{m=1}^{k-1} l_{k m} u_{m j} \text { for } j=k, k+1, \ldots, N \\
& l_{i k}=\frac{1}{u_{k k}}\left[a_{i k}-\sum_{m=1}^{k-1} l_{i m} l_{m k}\right] \text { for } i=k, k+1, k+2, \ldots, N
\end{aligned}
$$

The solution of the system of equations $\quad L y=b \quad$ is given by

$$
y_{i}=\frac{1}{l_{i i}}\left[b_{i}-\sum_{j=1}^{i-1} l_{i j} y_{i}\right] \quad \text { for } i=1,2, \ldots, N
$$

and the solution of the system of equation $\quad U x=y$
is given by $\quad x_{i}=\frac{1}{u_{i i}}\left[y_{i}-\sum_{j=i+1}^{N} u_{i j} x_{j}\right]$ for $i=N, N-1, \cdots, 1$
Example: Using the Crout factorization method, solve

$$
\begin{aligned}
& 4 x_{1}+2 x_{2}+3 x_{3}=7 \\
& 2 x_{1}-4 x_{2}-x_{3}=1 \\
& -x_{1}+x_{2}+4 x_{3}=-5
\end{aligned}
$$

Solution: First let us find L and U such that

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
4 & 2 & 3 \\
2 & -4 & 1 \\
-1 & 1 & 4
\end{array}\right]=\left[\begin{array}{ccc}
l_{1.1} & 0 & 0 \\
l_{2.1} & l_{2.2} & 0 \\
l_{3.1} & l_{3.2} & l_{3.3}
\end{array}\right]\left[\begin{array}{ccc}
1 & u_{1.2} & u_{1.3} \\
0 & 1 & u_{2.3} \\
0 & 0 & 1
\end{array}\right] \\
& \quad=\left[\begin{array}{ccc}
l_{1.1} & l_{1.1} u_{1.2} & l_{1.1} u_{1.3} \\
l_{2.1} & l_{2.1} u_{1.2}+l_{2.2} & l_{2.1} u_{1.3}+l_{2.2} u_{2.3} \\
l_{3.1} & l_{3.1} u_{1.2}+l_{3.2} & l_{3.1} u_{1.3}+l_{3.2} u_{2.3}+l_{3.3}
\end{array}\right] \\
& \therefore l_{1.1}=4, \quad l_{2.1}=2, \quad l_{3.1}=-1, \quad l_{1.1} u_{1.2}=2 \\
& \therefore u_{1.2}=\frac{2}{4}, \quad l_{1.1} u_{1.3}=3 \quad \therefore u_{1.3}=\frac{3}{4}, \quad l_{2.1} u_{1.3}+L_{2.2} u_{2.3}=-1 \\
& \Rightarrow 2 u_{1.3}+l_{2.2} u_{2.3}=-1 \Rightarrow 2 \frac{3}{4}+l_{2.2} u_{2.3}=-1 \Rightarrow l_{2.2} u_{2.3}=-1-\frac{3}{4}=\frac{-5}{2} \\
& \text { but } l_{2.1} u_{1.2}+l_{2.2}=-4 \Rightarrow+1+l_{2.2}=-4
\end{aligned}
$$

$$
\begin{gathered}
\therefore l_{2.2}=-5 \Rightarrow \therefore-5 u_{2.3}=\frac{-5}{2} \Rightarrow \therefore u_{2.3}=\frac{5}{10}=\frac{1}{2} \\
A=\left[\begin{array}{ccc}
4 & 2 & 3 \\
2 & -4 & -1 \\
-1 & 1 & 4
\end{array}\right]=\left[\begin{array}{ccc}
4 & 0 & 0 \\
2 & -5 & 0 \\
-1 & \frac{3}{2} & 4
\end{array}\right]\left[\begin{array}{ccc}
1 & \frac{1}{2} & \frac{3}{4} \\
0 & 1 & \frac{1}{2} \\
0 & 1 & 1
\end{array}\right]
\end{gathered}
$$

we want to solve $\quad A x=b=L(U x) \quad$ Let $\quad U x=y$.
Then we have

$$
L y=b \Rightarrow\left[\begin{array}{ccc}
4 & 0 & 0 \\
2 & -5 & 0 \\
-1 & \frac{3}{2} & 4
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
7 \\
1 \\
-5
\end{array}\right]
$$

solving we get $\quad \therefore y_{1}=\frac{7}{4}$

$$
\begin{aligned}
& 2 y_{1}-5 y_{2}=1 \Rightarrow \therefore y_{2}=\frac{\left(1-2 y_{1}\right)}{-5}=\frac{1}{2}, \\
& -y_{1}+\frac{2}{3} y_{2}+4 y_{3}=-5 \Rightarrow y_{3}=-1
\end{aligned}
$$

Now we have to solve $\quad U x=y$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & \frac{1}{2} & \frac{3}{4} \\
0 & 1 & \frac{1}{2} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
\frac{7}{4} \\
\frac{1}{2} \\
-1
\end{array}\right) \\
& \Rightarrow x_{3}=-1, \Rightarrow x_{2}+\frac{1}{2} x_{3}=\frac{1}{2} \Rightarrow x_{2}=1 \\
& \Rightarrow x_{1}+\frac{1}{2} x_{2}+\frac{3}{4} x_{3}=\frac{7}{4} \\
& \Rightarrow x_{1}+\frac{1}{2}-\frac{3}{4}=\frac{7}{4} \Rightarrow x_{1}=\frac{5}{2}-\frac{1}{2}=\frac{4}{2}=2 \Rightarrow x_{1}=2
\end{aligned}
$$

Homework:

1)solve the linear system using Gaussian Elimination:

$$
\begin{aligned}
& x_{1}-x_{2}+x_{3}=1 \\
& 2 x_{1}+3 x_{2}-x_{3}=4 \quad, \text { Ans }: x_{1}=1, x_{2}=1, x_{3}=1 \\
& -3 x_{1}+x_{2}+x_{3}=1
\end{aligned}
$$

2)Solve the linear system using an LU decomposition:

$$
\begin{aligned}
& x_{1}+4 x_{2}+3 x_{3}=10 \\
& 2 x_{1}+x_{2}-x_{3}=-1 \\
& 6 x_{1}-2 x_{2}+2 x_{3}=22
\end{aligned}
$$

Iterative Methods For Systems of Equations:

1) The Jacobi Method:

Consider a linear System $A x=b$ given by

$$
\begin{aligned}
& a_{1.1} x_{1}+a_{1.2} x_{2}+\cdots+a_{1 . N} x_{N}=b_{1} \\
& a_{2.1} x_{1}+a_{2.2} x_{2}+\cdots+a_{2 . N} x_{N}=b_{2}
\end{aligned}
$$

$$
a_{N .1} x_{1}+a_{N .2} x_{2}+\cdots+a_{N . N} x_{N}=b_{N}
$$

Solve the first equation for x_{1} the Second equation for x_{2} and So forth. then

$$
\begin{aligned}
& x_{1}=\frac{1}{a_{1.1}}\left(b_{1}-a_{1.2} x_{2}-\cdots-a_{1 . N} x_{N}\right) \\
& x_{2}=\frac{1}{a_{2.2}}\left(b_{2}-a_{2.1} x_{1}-\cdots-a_{2 . N} x_{N}\right) \\
& \vdots \\
& x_{N}=\frac{1}{a_{N . N}}\left(b_{N}-a_{N .1} x_{1}-\cdots-a_{N . N-1} x_{N-1}\right)
\end{aligned}
$$

The System Can be Written as

$$
x_{i}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{i=1}^{N} a_{i j} x_{j}\right) \text { for } i=1,2,3, \cdots, N \ldots(1)
$$

Provided $\quad a_{i i} \neq 0$

The entire Sequence of Jacobi iterates is defined from (1) as

$$
\begin{equation*}
x_{i}^{k+1}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{i=1}^{N} a_{i j} x_{j}^{k}\right) \text { for } i=1,2,3, \cdots, N \text { and } k=0,1,2 \ldots \tag{2}
\end{equation*}
$$

equation (2) is easy to program for Computation It is useful to Write equation (2) in matrix-Vector notation To study the convergence of the Jacobi Method

$$
\text { Let } \left.\begin{array}{rl}
A= & \left(\begin{array}{lll}
a_{1.1} & \cdots & a_{1 . N} \\
\vdots & \ddots & \vdots \\
a_{N .1} & \cdots & a_{N . N}
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & \cdots
\end{array}\right) 0 \\
a_{2.1} & 0 \\
\cdots & 0 \\
a_{N .1} & \cdots \\
& 0
\end{array}\right)
$$

Where L.D. and U are the Strictly lower, diagonal
And Strictly upper triangular parts of A The equation $A x=b$, which is $(L+D+U) x=b$ Can be written as

$$
D x=-(L+U) x+b
$$

This reduces to

$$
x=-D^{-1}(L+U) x+D^{-1} b
$$

And sequence of iterates is given by

$$
x^{(k+1)}=-D^{-1}(L+U) x^{(k)}+D^{-1} b \text { for } K=0,1 \ldots \ldots .(3)
$$

EXAMPLE:

Solve $x_{1}+10 x_{2}=11 \quad 8 x_{1}+x_{2}=9$

Using
(1) Jacobi method
(2) Express the System in the forms of

equation (3) ?

Solution:

Solving the first equation for x_{1} and the Second for x_{2} yields

$$
\begin{aligned}
& x_{1}=11-10 x_{2} \\
& x_{2}=9-8 x_{1}
\end{aligned}
$$

(i) the Jacobi iterates

$$
x_{1}^{(k+1)}=11-10 x_{2}^{(k)} \text { and } x_{2}^{(k+1)}=9-8 x_{1}^{(k)}, k=0,1, \ldots
$$

Let $x_{1}{ }^{(0)}=0$ and $x_{2}{ }^{(0)}=0$.then
We have

$$
\begin{aligned}
& x_{1}^{(1)}=11-10 x_{2}{ }^{(0)}=11, \text { for } K=1 \\
& x_{2}{ }^{(1)}=9-8 x_{1}{ }^{(0)}=9, \text { for } K=1
\end{aligned}
$$

K	$x_{1}{ }^{(k)}$	$x_{2}{ }^{(k)}$
0	0	0
1	11	9
2	-79.0	-79.0
3	801.0	641.0
4	-6399	-6399
5	64.001	51.201

Not Converging

(ii) We have

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
1 & 10 \\
8 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
8 & 0
\end{array}\right)+\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
0 & 10 \\
0 & 0
\end{array}\right)=L+D+U \\
& D^{-1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \Rightarrow x^{(k+1)}=-D^{-1}(L+U) x^{(k)}+D^{-1} b
\end{aligned}
$$

i.e/

$$
\binom{x_{1}}{x_{2}}^{(k+1)}=-\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 10 \\
8 & 0
\end{array}\right)\binom{x_{1}}{x_{2}}^{k}+\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{11}{9}=-\left(\begin{array}{ll}
0 & 10 \\
8 & 0
\end{array}\right)\binom{x_{1}}{x_{2}}^{k}+\binom{11}{9}
$$

Our Next question is to determine the Condition for Which the Sequence will Converges to the Solution of a system.
We need to know first of all:

$$
\begin{aligned}
& \|x\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{N}\right|=\sum_{i=1}^{N}\left|x_{i}\right| \\
& \|x\|_{2}=\sqrt{x_{1}^{2}+x_{2}^{2}}+\cdots+x_{N}^{2} \sqrt{\sum_{i=1}^{N}\left|x_{i}\right|^{2}} \\
& \|x\|_{x}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \cdots,|N|\right\}=\max \left|x_{i}\right|
\end{aligned}
$$

e. g

Find $\|A\|_{1},\|A\|_{2}$ and $\|A\|_{x}$ if
$A=\left|\begin{array}{lll}1 & 2 & 3 \\ 3 & 4 & 5 \\ 5 & 6 & 7\end{array}\right|$

Solution

$\|A\|_{1}=\max \{1|+|3|+|5|,|2|+|4|+|6|,|3|+|5|+|7|\}=\max \{9,12,15\}=15$

Theorem:

Let A be a strictly diagonally dominant matrix.
Then the Jacobi and Gauss-Seidel iterations Converge to the unique solution of $A x=b \quad$ for any $\quad x^{(0)}$

$$
\left|a_{i}\right| \succ \sum_{\substack{j=1 \\ j \neq i}}^{N}\left|a_{i j}\right| \quad i=1,2, \ldots \ldots, N
$$

e.g/

$$
A=\left(\begin{array}{ccc}
5 & -1 & -2 \\
1 & -3 & 0 \\
1 & 2 & 10
\end{array}\right)
$$

$$
5 \succ|-1|+|-2|=3 \quad, \quad-3 \succ|1|+|0|=1, \quad 10 \succ|1|+|2|=3
$$

Convergence of the Jacobi Methods:

for Jacobi to converge

$$
\|B\| \leq\left\|D^{-1}(L+U)\right\|<1
$$

$$
\text { Where } B=-D^{-1}(L+U)
$$

i.e the eignvalues $\quad \lambda_{i} \prec 1$
and, always we have to assume value for the vector
$x_{i}^{(0)} \quad$ for $\quad i=1,2, \ldots \ldots$.
EXAMPLE: Consider the linear System:

$$
\begin{aligned}
-2 x_{1}+x_{2} & =-2 \\
x_{1}-2 x_{2}+x_{3} & =0 \\
x_{2}-2 x_{3} & =-3
\end{aligned}
$$

Then

$$
A=\left(\begin{array}{ccc}
-2 & 1 & 0 \\
1 & -2 & 1 \\
0 & 1 & -2
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)+\left(\begin{array}{ccc}
-2 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right)+\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

The Jacobi matrix is

$$
B_{j}=-D^{-1}(L+U)=\left(\begin{array}{ccc}
0 & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} \\
0 & \frac{1}{2} & 0
\end{array}\right)
$$

To find the eignvalues

$$
\text { Let } \lambda I=\left(\begin{array}{lll}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right)
$$

$$
\Rightarrow B_{j}-\lambda I=\left(\begin{array}{ccc}
0-\lambda & \frac{1}{2} & 0 \\
\frac{1}{2} & 0-\lambda & \frac{1}{2} \\
0 & \frac{1}{2} & 0-\lambda
\end{array}\right)
$$

$\operatorname{det}\left(B_{j}-\lambda 1\right)=-\lambda\left[\lambda^{2}-\frac{1}{4}\right]-\left[\frac{-\lambda}{4}\right]$

$$
=-\lambda^{3}+\frac{\lambda}{4}+\frac{\lambda}{4}=-\lambda\left[\lambda^{2}-\frac{1}{4}\right]
$$

$$
=-\lambda\left(\lambda^{2}-\frac{1}{4}\right)=0
$$

$$
\Rightarrow \lambda_{1}=0, \lambda_{2}=-\sqrt{\frac{1}{2}}, \lambda_{3}=+\sqrt{\frac{1}{2}}
$$

i.e. $\lambda_{i} \prec 1$

$$
x^{(K+1)}=-D(L+U) x^{(K)}+D^{-1} b
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]^{(K+1)}=\left(\begin{array}{lll}
0 & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} \\
0 & \frac{1}{2} & 0
\end{array}\right)\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]^{(K)}+\left(\begin{array}{rcc}
-\frac{1}{2} & 0 & 0 \\
0 & -\frac{1}{2} & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right)\left[\begin{array}{l}
-2 \\
0 \\
-3
\end{array}\right]
$$

Assuming $\quad x_{1}^{(0)}=x_{2}^{(0)}=x_{3}^{(0)}=0$

K	$X_{1}^{(K)}$	$X_{2}^{(K)}$	$X_{3}^{(K)}$	$x_{1}=\frac{9}{4}, x_{2}=\frac{5}{2}, x_{3}=\frac{11}{4}$
0	0	0	0	
1	1	0	1.5	
2	1	1.25	1.5	
5	1.9375	1.875	2.4375	
10	2.17188	2.42188	2.67188	
30	2.24992	2.49992	2.74992	

To work an inverse matrix using ad-ioint method:

$$
\begin{aligned}
& \left|\begin{array}{ll}
1 & 0 \\
2 & 3
\end{array}\right|-\left|\begin{array}{ll|l}
2 & 1 \\
2 & 3
\end{array}\right| \\
& \left|\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right| \\
& \left.-\left|\begin{array}{ll}
4 & 0 \\
1 & 3
\end{array}\right| \begin{array}{|l|}
1 \\
1
\end{array} \right\rvert\, \\
& 1
\end{aligned}\left|-\left|\begin{array}{ll}
1 & 1 \\
4 & 0
\end{array}\right|+\left(\begin{array}{ccc}
3 & -4 & -1 \\
-12 & 2 & 4 \\
7 & 0 & -7
\end{array}\right) .\right.
$$

$$
\begin{aligned}
& A A^{*}=A^{*} A=-14 I \\
& A^{-1}=\frac{A^{*}}{\operatorname{det} A}=\left(\begin{array}{ccc}
-\frac{3}{14} & \frac{4}{14} & \frac{1}{14} \\
\frac{12}{14} & -\frac{2}{14} & -\frac{4}{14} \\
-\frac{7}{14} & 0 & \frac{7}{14}
\end{array}\right)
\end{aligned}
$$

2) Gauss- Sidel Method:

We rewrite equation (1) as

$$
x_{i}=\frac{1}{a_{i i}}\left[b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}-\sum_{j=i+1}^{N} a_{i j} \cdot x_{j}\right] \cdots(4) \text { for } i=1,2, \ldots \ldots \ldots \ldots . N
$$

provided $\quad a_{i i} \neq 0$
from the above equation (4) the Gauss-Seidel iteration Sequence can be defined as

$$
\begin{aligned}
& x_{i}^{(K+1)}=\frac{1}{a_{i i}}\left[b_{i i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(K+1)}-\sum_{j=i+1}^{N} a_{i j} x_{j}^{(K)}\right] \cdots(5) \\
& \text { for } i=1,2, \ldots \ldots \ldots . N \text { and } k=0,1,2, \ldots \\
& \text { and given } x_{i}^{(0)}
\end{aligned}
$$

Each updated component $x_{i}^{(K+1)}$
Is used in the calculation of the next Component and therefore, for computer calculation, the new value can be immediately stored at the location where the old value was stored this reduces the number of necessary locations

Equation (5) Can be written as

$$
\begin{aligned}
& a_{11} x_{1}^{(K+1)}=b_{1}-a_{1.2} x_{2}^{(K)}-\ldots \ldots-a_{1 . N} x_{N}^{(K)} \\
& a_{2.1} x_{1}^{(K+1)}+a_{2.2} x_{2}^{(K+1)}=b_{2}-a_{2.3} x_{3}^{(K)}-a_{2 . N} x_{N}^{(K)} \\
& \vdots \\
& a_{N .1} x_{1}^{(K+1)}+a_{N .2} x_{2}^{(K+1)}+\ldots \ldots \ldots+a_{N . N} x_{N}^{(K+1)}=b_{N}
\end{aligned}
$$

In matrix notation:

$$
\left(\begin{array}{cccc}
a_{1.1} & 0 & \cdots & 0 \\
a_{2.1} & a_{2.2} & \cdots & 0 \\
a_{N .1} & a_{N .2} & \cdots & a_{N . N}
\end{array}\right)\left[\begin{array}{c}
x_{1}^{(K+1)} \\
x_{2}^{(K+1)} \\
\vdots \\
x_{N}^{(K+1)}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{N}
\end{array}\right]-\left(\begin{array}{cccc}
0 & a_{1.2} & \cdots & a_{1 . N} \\
0 & 0 & & a_{2 . N} \\
0 & 0 & & 0
\end{array}\right)\left[\begin{array}{c}
x_{1}^{(K)} \\
x_{2}^{(K)} \\
\vdots \\
x_{N}^{(K)}
\end{array}\right]
$$

$$
\begin{aligned}
& (D+L) x^{(K+1)}=b-U x^{(k)} \\
& \text { ie. } \quad x^{(K+1)}=-(D+L)^{-1} U x^{(k)}+(D+L)^{-1} b \ldots \ldots . .^{*}
\end{aligned}
$$

EXAMPLE: solve

$$
\begin{aligned}
& x_{1}+10 x_{2}=11 \\
& 8 x_{1}+x_{2}=9
\end{aligned}
$$

Using

(i) the Gauss-Seidel Method
(ii) Express the System in the form of * equation

Solution:

The Gauss Seidel iterations are given by

$$
\begin{aligned}
& x_{1}^{(K+1)}=11-10 x_{2}^{(K)} \text { for } K=0,1, \ldots \ldots \ldots \\
& x_{2}^{(K+1)}=9-8 x_{1}{ }^{(K+1)} \text { for } K=0,1, \ldots \ldots \ldots \\
& \text { Let } x_{1}^{(0)}=x_{2}^{(0)}=\mathbf{0}
\end{aligned}
$$

Then for $\mathrm{K}=0$

$$
\begin{aligned}
& x_{1}^{(1)}=11-10 x_{2}^{(0)}=11 \\
& x_{2}^{(1)}=9-8 x_{1}^{(1)}=9-88=-79
\end{aligned}
$$

K	$X_{1}^{(k)}$	$X_{2}^{(K)}$
0	0	0
1	11	-79
2	801	-6399
3	64.001	-511.99

It is diverging.
Convergence of the Gauss-Seidel Method
For Convergence
$\|B\|=(D+L)^{-1} U \| \prec 1$
i.e. The eiganvalues $\lambda_{i} \prec 1$.

Where $B=-(D+L)^{-1} U$.
We always have to assume values for

$$
x_{2}^{(0)} \text { for } i=1,2, \ldots \ldots .
$$

EXAMPLE: Consider the linear System.

$$
\begin{aligned}
-2 x_{1}+x_{2} & =-2 \\
x_{1}-2 x_{2}+x_{3} & =0 \\
x_{2}-2 x_{3} & =-3
\end{aligned}
$$

Solution in this case

$$
A=\left(\begin{array}{ccc}
-2 & 1 & 0 \\
1 & -2 & 1 \\
0 & 1 & -2
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)+\left(\begin{array}{ccc}
-2 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right)+\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

The Gauss-Seidel Matrix is

$$
\begin{aligned}
B=-(D+L)^{-1} U & =\left(\begin{array}{lll}
\frac{1}{2} & 0 & 0 \\
\frac{1}{4} & \frac{1}{2} & 0 \\
\frac{1}{8} & \frac{1}{4} & \frac{1}{2}
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & \frac{1}{2} & 0 \\
0 & \frac{1}{4} & \frac{1}{2} \\
0 & \frac{1}{8} & \frac{1}{4}
\end{array}\right) \\
& \text { Let } \quad \lambda I=\left(\begin{array}{lll}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right) \Rightarrow B-\lambda I=\left(\begin{array}{lll}
-\lambda & \frac{1}{2} & 0 \\
0 & \frac{1}{4}-\lambda & \frac{1}{2} \\
0 & \frac{1}{8} & \frac{1}{4}-\lambda
\end{array}\right)
\end{aligned}
$$

$\operatorname{det}(B-\lambda I)=-\lambda\left[\left(\frac{1}{4}-\lambda\right)^{2} \frac{1}{16}\right]=-\lambda\left[\lambda^{2}-\frac{2}{4} \lambda+\frac{1}{16}-\frac{1}{16}\right]$

$$
\begin{aligned}
& =\lambda^{2}\left(\lambda-\frac{1}{2}\right) \\
& \Rightarrow \lambda_{1}=0, \lambda_{2}=0, \lambda_{3}=\frac{1}{2} \\
& \quad \text { i.e. } \lambda_{i} \succ 1 \quad \text { It Converges } \\
& x^{(K+1)}=-(D+L)^{-1} U x^{(K)}+(D+L)^{-1} b \\
& \left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)^{(K+1)}=\left(\begin{array}{lll}
0 & \frac{1}{2} & 0 \\
0 & \frac{1}{4} & \frac{1}{2} \\
0 & \frac{1}{8} & \frac{1}{4}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)^{(K)}+\left(\begin{array}{ccc}
-\frac{1}{2} & 0 & 0 \\
-\frac{1}{4} & -\frac{1}{2} & 0 \\
-\frac{1}{8} & -\frac{1}{4} & -\frac{1}{2}
\end{array}\right)\left(\begin{array}{c}
-2 \\
0 \\
-3
\end{array}\right)
\end{aligned}
$$

$$
\text { Assuming } \quad x_{1}^{(0)}=x_{2}^{(0)}=x_{3}^{(0)}=0
$$

K	$x_{1}^{(K)}$	$x_{2}^{(K)}$	$x_{3}^{(K)}$
0	0	0	0
1	1	0.5	1.75
2	1.25	1.5	2.25
5	2.125	2.375	2.6875
10	2.24609	2.49609	2.74805

Approximation Theory:

Discrete Least - Squares approximation :

So far we discussed the techniques to compute x of a given linear System $A x=b$ where A is a Square matrix. If A is nonsingular, then there exists a unique solution. In this section, we turn our attention to a system of m equations in n unknowns where $m \neq n$

Thus if A has m rows and n columns, then x is a vector with n components and b is a vector with m components. If $m>n$. then we have more equations than unknowns. Such systems are usually over determined.
Over determined systems do arise in practice and need to be solved.

Let us have

$$
\begin{array}{ll}
a_{0}+11 a_{1}=20 & , \\
a_{0}+19 a_{1}=26 \\
a_{0}+13 a_{1}=21 & , \\
a_{0}+23 a_{1}=32 \\
a_{0}+17 a_{1}=24 & , \\
a_{0}+27 a_{1}=34
\end{array}
$$

$$
\text { i.e. }\left(\begin{array}{ll}
1 & 11 \\
1 & 13 \\
1 & 17 \\
1 & 19 \\
1 & 23 \\
1 & 27
\end{array}\right)\binom{a_{0}}{a_{1}}=\left(\begin{array}{c}
20 \\
21 \\
24 \\
26 \\
32 \\
34
\end{array}\right) \ldots \ldots \ldots \ldots . .(1)
$$

One possibility is to determine a_{0}, and a_{1} from apart of equation (1) by ignoring the rest. However Since the data comes from the same source. It is difficult to know which equations contain large errors.
Thus we can not Justify determining a_{0} and a_{1} from apart of equation (1) by ignoring the rest.

It seems reasonable to choose a_{0} and a_{1} Such that the average error in these six equations is minimum.
There are many ways to define this average error.
But the most convenient and often used is the sum of squares.

$$
\begin{aligned}
& E^{2}=\left(20-a_{0}-11 a_{1}\right)^{2}+\left(21-a_{0}-13 a_{1}\right)^{2}+\left(24-a_{0}-17 a_{1}\right)^{2} \\
& +\left(26-a_{0}-1 a_{1}\right)^{2}+\left(32-a_{0}-23 a_{1}\right)^{2}+\left(34+a_{0}-27 a_{1}\right)^{2}
\end{aligned}
$$

Consider a System

$$
\begin{aligned}
& a_{1.1} x_{1}+a_{1.2} x_{2}+\ldots \ldots \ldots+a_{1 . n} x_{n}=b_{1} \\
& a_{2.1} x_{1}+a_{2.2} x_{2}+\ldots \ldots \ldots+a_{2 . n} x_{n}=b_{2}
\end{aligned}
$$

$$
a_{m .1} x_{1}+a_{m .2} x_{2}+\ldots \ldots \ldots+a_{m . n} x_{n}=b_{m}
$$

Where A is $m \times n$ and $m>n$. define the vector

$$
\begin{aligned}
& r=b-A x \\
& =\left[b_{1}-\sum_{i=1}^{n} a_{1 i} x_{i}, b_{2}-\sum_{i=1}^{n} a_{2 i} x_{i}, \ldots \ldots \ldots, b_{m}-\sum_{i=1}^{n} a_{m i} x_{i}\right]^{\backslash} \\
& =\left[r_{1}, r_{2}, \ldots, r_{m}\right]^{\backslash}
\end{aligned}
$$

Then

$$
\begin{aligned}
& E^{2}=r_{1}^{2}+r_{2}^{2}+\ldots \ldots \ldots+r_{m}^{2} \\
& E^{2}=r^{1} r
\end{aligned}
$$

$$
\begin{aligned}
& E^{2}=(b-A x)^{1} \quad(b-A x) \\
&=\left(b_{1}-a_{11}\right.\left.x_{1}-a_{12} x_{2}-\cdots-a_{1 n} x_{n}\right)^{2} \\
&+\left(b_{2}-a_{21} x_{1}-a_{22} x_{2}-\cdots-a_{2 n} x_{n}\right)^{2} \\
&+\cdots+\left(b_{m}-a_{m 1} x_{1}-a_{m 2} x_{2}-\cdots-a_{m n} x_{n}\right)^{2}
\end{aligned}
$$

We wish to find $x \in R^{n}$ for which E^{2} is minimum Which is called a least square solution of $A x=b . \quad E^{2}$ is min where

$$
\frac{\partial}{\partial x_{1}}\left(r^{\prime} r\right)=\frac{\partial}{\partial x_{2}}\left(r^{\prime} r\right)=\cdots \frac{\partial}{\partial x_{n}}\left(r^{\prime} r\right)=0 \rightarrow(1)
$$

Since $\boldsymbol{r}^{\prime} r=r_{1}^{2}+r_{2}^{2}+\cdots+r_{m}^{2}$

$$
\begin{aligned}
\frac{\partial}{\partial x_{1}}\left(r^{\prime} r\right) & =\frac{\partial}{\partial x_{1}}\left(r_{1}^{2}+r_{2}^{2}+\cdots+r_{m}^{2}\right) \\
& =2 r_{1} \frac{\partial r_{1}}{\partial x_{1}}+2 r_{2} \frac{\partial r_{2}}{\partial x_{1}}+\cdots+2 r_{m} \frac{\partial f_{m}}{r x_{1}} \\
& =-2 r_{1} \quad a_{11}-2 r_{2} \quad a_{21} \cdots-2 r_{m} a_{m 1}
\end{aligned}
$$

It can be shown that $\quad \frac{\partial}{\partial x_{j}}\left(r^{\prime} r\right)=-2 \sum_{i=1}^{m} r_{i} a_{i j} \rightarrow(2)$
Substituting equation (2) in (1) gives

$$
\sum_{i=1}^{m} r_{i} a_{i j}=\sum_{i=1}^{m} a_{i j} r_{i}=0 \quad \text { for } j=1,2, \cdots, n
$$

$$
\left[\begin{array}{llll}
a_{1.1} & a_{1.2} & \cdots & a_{m .1} \tag{3}\\
a_{2.1} & a_{2.2} & \cdots & a_{m .2} \\
\vdots & & & \\
a_{1 . x} & a_{2 . n} & \cdots & a_{m . n}
\end{array}\right]\left[\begin{array}{l}
r_{1} \\
\vdots \\
r_{m}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

The system of equation is $A^{\curlywedge} r=0$
Substituting $\quad r=b-A x$ in equation
(3) we get $A^{\prime}(b-A x)=0$

$$
\therefore A^{\prime} A x=A^{\prime} b
$$

which is called a normal equation

Many times an over determined system arises when we try to find a_{0} and a1 such that $y=a_{0}+a_{1} x$ is the least squares to fit to the of data given in table.

$$
\begin{array}{lllll}
x=x_{1} & x_{2} & x_{3} & \cdots & x_{N} \\
y=y_{1} & y_{2} & y_{3} & \cdots & y_{N}
\end{array}
$$

For each pair $\quad\left(x_{i}, y_{i}\right)$ the equation $y_{i}=a_{0}+a_{1} x_{i}$ should hold.
therefore

$$
\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \\
1 & x_{N}
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right]
$$

The normal equation: $\quad A^{\prime} A x=A^{\prime} b$ reduces to

$$
\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & x_{N}
\end{array}\right]\left[\begin{array}{ll}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \\
1 & x_{N}
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1}
\end{array}\right]=\left[\begin{array}{llll}
1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & & x_{N}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{N}
\end{array}\right]
$$

Which can be simplifies to

$$
\left[\begin{array}{ll}
N & \sum_{i=1}^{N} x_{i} \\
\sum_{i=1}^{N} x_{i} & \sum_{i=}^{N} x_{i}^{2}
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1}
\end{array}\right]=\left[\begin{array}{l}
\sum_{i=1}^{N} y_{i} \\
\sum_{i=1}^{N} x_{i} y_{i}
\end{array}\right] \rightarrow(4)
$$

A'A in equation (4) is symmetric solving equation (4) for a_{0} and a_{1}

Example:
Using the least squares method find the linear polynomial that fits the following data:

$$
\begin{array}{cccc}
x_{i} & -1 & 0 & 1 \\
y_{i} & -3 & -1 & 2
\end{array}
$$

Solution: $y=a_{0}+a_{1} x$

$$
\left.\begin{array}{c}
{\left[\begin{array}{lll}
N & \sum & x_{i} \\
\sum x_{i} & \sum & x_{i}^{2}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1}
\end{array}\right]=\left[\begin{array}{l}
\sum y_{i} \\
\sum x_{i} y_{i}
\end{array}\right]} \\
3 a_{0}=-2 \quad \therefore a_{0}=\frac{-2}{3} \quad, 2 a_{1}=5 \quad \therefore a_{1}=5 / 2 \\
0
\end{array}\right]=\left[\begin{array}{c}
-2 \\
5
\end{array}\right] \quad \begin{aligned}
& \therefore y=\frac{-2}{3}+\frac{5}{2} x
\end{aligned}
$$

Example:
The experimental data points given below indicate a curve having the form

$$
\begin{array}{lllll}
y=\frac{a x}{b+x} & \begin{array}{c}
x_{i} \\
\\
y_{i}
\end{array} & 1 & 2 & 3 \\
y_{1} & 1.333 & 1.5
\end{array}
$$

Determine the least square fit of this of function to the data ?

$$
\begin{aligned}
& y=\frac{a x}{b+x} \\
& y b+y x=a x \\
& \therefore y x=a x-b y \\
& y=a-\frac{b y}{x}
\end{aligned}
$$

$$
\begin{aligned}
& \text { LetZ }=\frac{y}{x}, \therefore y=a-b z \quad a_{0}=a \quad a_{1}=-b \\
& {\left[\begin{array}{ll}
n & \sum z_{i} \\
\sum z_{i} & \sum z_{i}^{2}
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1}
\end{array}\right]=\left[\begin{array}{l}
\sum y_{i} \\
\sum z_{i} y_{i}
\end{array}\right],\left[\begin{array}{ll}
3 & 2.1665 \\
2.1665 & 1.6942
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1}
\end{array}\right]=\left[\begin{array}{l}
3.8333 \\
2.6384
\end{array}\right]}
\end{aligned}
$$

$$
\therefore a_{0} \approx 2=a \quad a_{1}=-1=-b
$$

Example: The experimental data points given below indicate a curve having the form:

$$
\begin{array}{llccc}
y=\frac{x^{2}}{a} e^{x}+x e^{b} & x_{i} & 1 & 2 & 3 \\
y_{i} & 2.102 & 8.223 & 35.074
\end{array}
$$

Determine the least square fit of this function to the data?
Solution:

$$
\begin{array}{ll}
\frac{y}{x}=\frac{1}{a} x e^{x}+e^{b} & \text { let } Z=\frac{y}{x} \\
Z=\frac{1}{a} w+e^{b} & \text { where } w=x e^{x} \\
Z_{i}=a_{0}+a_{1} w_{i} & \text { where } a_{0}=e^{b}, a_{1}=\frac{1}{a}
\end{array}
$$

$\left.\begin{array}{|c|c|c|c|c|c|}\hline x_{i} & y_{i} & Z_{i} & W_{i} & W_{i}^{2} & W_{i} Z_{i} \\ \hline 1 & 2.102 & 2.102 & 2.718 & 7388 & 5.7132 \\ 2 & 8.223 & 4.112 & 14.778 & 218.389 & 60.767 \\ 3 & 35.074 & 11.691 & 60.257 & 3630.906 & 704.965 \\ & & & & \\ \hline \sum w_{i} & \sum w_{i}^{2}\end{array}\right]$
$\left[\begin{array}{ll}N & 77.753 \\ 77.753 & 3856.683\end{array}\right]\left[\begin{array}{l}a_{0} \\ a_{1}\end{array}\right]=\left[\begin{array}{l}17.905 \\ 770.945\end{array}\right]$
$b=\ln a_{0}=\ln (1.649)=0.5 \quad$ and $\quad a=\frac{1}{a_{1}}=\frac{1}{0.167} 6.00$

We could use a polynomial of degree M given by

$$
P_{M}(x)=a_{1}+a_{1} x+\cdots+a_{M} x^{M} \quad \cdots(1)
$$

Where the coefficient $a_{0}, a_{1}, \ldots, a_{M}$
are to be determined to fit a given set of data points

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{N}, y_{N}\right)
$$

Since each pair $\left(x_{i}, y_{i}\right)$ satisfies equation (1) we get

$$
\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{M} \tag{2}\\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{M} \\
1 & x_{N} & x_{N}^{2} & \cdots & x_{N}^{M}
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
\vdots \\
a_{M}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right]
$$

The least squares solution of (2) is given by

$$
A^{\prime} A a=A^{\prime} b \quad * \quad, \quad b=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right]
$$

Example:

Fit the data below with the least squares polynomial of degree two

$$
\begin{array}{cccccc}
x_{i} & 0 & 0.25 & 0.5 & 0.75 & 1.00 \\
y_{i} & 1 & 1.284 & 1.6487 & 2.1170 & 2.7183
\end{array}
$$

Solution:

$$
\begin{aligned}
& A^{\prime} A a=A^{\prime} b \\
& \text { the polynomial is } \\
& y=a_{0}+a_{1} x+a_{2} \quad x^{2}
\end{aligned}
$$

$$
\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
0 & 0.25 & 0.5 & 0.75 & 1 \\
0 & 0.0625 & 0.25 & 0.5625 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0.25 & 0.0625 \\
1 & 0.5 & 0.25 \\
1 & 0.75 & 0.5625 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]
$$

$$
=\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
0 & 0.25 & 0.5 & 0.75 & 1 \\
0 & 0.0625 & 0.25 & 0.5625 & 1
\end{array}\right]\left[\begin{array}{l}
1.284 \\
1.6487 \\
2.117 \\
2.7183
\end{array}\right]
$$

$$
\therefore\left[\begin{array}{ccc}
5 & 2.5 & 1.875 \\
2.5 & 1.875 & 1.5625 \\
1.875 & 1.5625 & 1.3828
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
8.768 \\
5.4514 \\
4.4015
\end{array}\right]
$$

$$
\begin{aligned}
& 5 a_{0}+2.5 a_{1}+1.875 a_{2}=8.768 \\
& 2.5 a_{0}+1.875 a_{1}+1.5625 a_{2}=5.4514 \\
& 1.875 a_{0}+1.5625 a_{1}+1.3828 a_{2}=4.4015 \\
& \therefore \quad a_{0}=1.0052, \quad a_{1}=0.8641, \quad a_{2}=0.8437
\end{aligned}
$$

The polynomials is $y=a_{0}+a_{1} x+a_{2} x^{2}$

$$
=1.0052+0.8641 x+0.8437 x^{2}
$$

Home work:

1) using the least squares method, find the linear polynomials that fits the following data.

$$
\begin{array}{llll}
x_{i} & 2 & 3 & 4 \\
y_{i} & 2 & 9 / 4 & 7 / 4
\end{array}
$$

2) Using the least squares method, Find the quadratic polynomial that fits the following data :

$$
\begin{array}{ccccc}
x_{i} & 1 & 2 & 3 & 4 \\
y_{i} & 1 & 2 & 4 & 9
\end{array}
$$

Orthogonal polynomials and least squares approximation

 suppose $f \in C[a, b]$and that polynomial of degree at most n, P_{n} is required that will minimize

$$
\begin{equation*}
\int_{a}^{b}\left[f(x)-P_{n}(x)\right]^{2} d x \tag{1}
\end{equation*}
$$

To determine a least squares approximating polynomial that is, a polynomial to minimize expression (1) let
$P_{n}(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=\sum_{k=0}^{n} a_{k} x^{k}$
and define $E\left(a_{0}, a_{1}, \cdots, a_{n}\right)=\int_{a}^{b}\left[f(x)-\sum_{k=0}^{n} a_{k} x^{k}\right]^{2} d x$

The problem is to find real coefficients a_{0}, \ldots, a_{n} that Will minimize E from the calculus of functions of several variables, a necessary condition for the number a_{0}, \cdots, a_{n}
to minimize E is that

$$
\frac{\partial E}{\partial a_{j}}=0 \quad \text { for } \quad j=0,1, \cdots, n
$$

$\sin c e \quad E=\int_{a}^{b}[f(x)]^{2} d x-2 \sum_{k=0}^{n} a_{k} \int_{a}^{b} x^{k} f(x) d x+\int_{a}^{b}\left[\sum_{k=0}^{n} a_{k} x^{k}\right]^{2} d x$

$$
\frac{\partial E}{\partial a_{j}}=-2 \int_{a}^{b} x^{j} f(x) d x+2 \sum_{k=0}^{n} a_{k} \int_{a}^{b} x^{j+k} d x \quad j=0,1, \cdots, n
$$

Hence in order to find P_{b}, the linear equations $(n+1)$

$$
\begin{aligned}
& k=0 \text { a } \\
& \text { Must be solved for the }(\mathrm{n}+1) \text { unknowns } a_{j}, \quad j=0,1, \cdots, n
\end{aligned}
$$

These equations are called the normal equations it can be shown that the normal equations always have a unique solution provided

$$
f \in C[a, b] \text { and } \mathrm{a} \neq \mathrm{b}
$$

Example: Find the least - squares approximating polynomial of degree two for the function $f(x)=\sin \pi x \quad$ on the interval $\quad[0,1]$

Solution: The normal equations for $P_{2}(x)=a_{0}+a_{1} x+a_{2} x^{2}$

$$
\begin{aligned}
& a_{0} \int_{0}^{1} 1 d x+a_{1} \int_{0}^{1} x d x+a_{2} \int_{0}^{1} x^{2} d x=\int_{0}^{1} \operatorname{Sin} \pi x d x \\
& a_{0} \int_{0}^{1} x d x+a_{1} \int_{0}^{1} x^{2} d x+a_{2} \int_{0}^{1} x^{3} d x=\int_{0}^{1} x \operatorname{Sin} \pi x d x \\
& a_{0} \int_{0}^{1} x^{2} d x+a_{1} \int_{0}^{1} x^{3} d x+a_{2} \int_{0}^{1} x^{4} d x=\int_{0}^{1} x^{2} \operatorname{Sin} \pi x d x
\end{aligned}
$$

Performing the integrations yields

$$
\begin{aligned}
& a_{0}+\frac{1}{2} a_{1}+\frac{1}{3} a_{2}=\frac{2}{\pi} \\
& \frac{1}{2} a_{0}+\frac{1}{3} a_{1}+\frac{1}{4} a_{2}=\frac{1}{\pi} \\
& \frac{1}{3} a_{0}+\frac{1}{4} a_{1}+\frac{1}{5} a_{2}=\frac{\pi^{2}-4}{\pi^{3}}
\end{aligned}
$$

Solving the equations together to obtain

$$
\begin{aligned}
& a_{0}=\frac{12 \pi^{2}-120}{\pi^{3}} \approx-0.50465, a_{1}=\frac{720-60 \pi^{2}}{\pi^{3}} \approx 4.12251 \\
& a_{2}=\frac{60 \pi^{2}-720}{\pi^{3}} \approx-4.12251
\end{aligned}
$$

Consequently, the least squares polynomial approximation of degree two for

$$
\begin{aligned}
& f(x)=\operatorname{Sin} \pi x \text { on }[0,1] \text { is } \\
& p_{2}(x)=-4.12251 x^{2}+4.12251 x-0.50465
\end{aligned}
$$

Eigen values and eigenvectors:

The power method:

Let A be an $N \times N$ matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{N}$ such that $\left|\lambda_{1}\right| \succ\left|\lambda_{2}\right| \geq\left|\lambda_{3}\right| \cdots \geq\left|\lambda_{N}\right|$
Assume that A has N linearly independent eigenvectors $V_{1}, V_{2}, \cdots, V_{N}$ associated with each of these eigenvalues since $\left\{V_{1}, V_{2}, \cdots, V_{N}\right\}$ form a basis of R^{N}, we can express any given vector $x^{(0)}$ as

$$
x^{(0)}=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{N} v_{N}
$$

Where
$\alpha_{1}, \alpha_{2}, \cdots, \alpha_{N}$ are constants. Multiplying both sides of the equation by A gives

$$
\begin{aligned}
A x^{(0)} & =\alpha_{1} A v_{1}+\alpha_{2} A v_{2}+\cdots+\alpha_{N} A v_{N} \\
& =\alpha_{1} \lambda_{1} v_{1}+\alpha_{2} \lambda_{2} v_{2}+\cdots+\alpha_{N} \lambda_{N} v_{N}
\end{aligned}
$$

Inductively, for any positive integer K :

$$
\begin{aligned}
A^{k} x^{(0)} & =\alpha_{1} \lambda_{1}^{(k)} v_{1}+\alpha_{2} \lambda_{2}^{k} v_{2}+\cdots+\alpha_{N} \lambda_{N}^{k} v_{N} \\
& =\lambda_{1}^{(k)}\left\{\alpha_{1} v_{1}+\alpha_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} v_{2}+\cdots+\alpha_{N}\left(\frac{\lambda_{N}}{\lambda_{1}}\right)^{k} v_{N}\right\}
\end{aligned}
$$

Since

$$
\begin{aligned}
& \left|\lambda_{i} / \lambda_{1}\right| \prec 1 \text { for } i \geq 2 \text { then } \\
& \qquad A^{k} x^{(0)} \rightarrow \lambda_{1}^{k} \alpha_{1} v_{1} \text { as } K \rightarrow \infty
\end{aligned}
$$

For any given vector $x^{(0)}$ we generate the sequence given by

$$
\begin{equation*}
x^{(k)}=A x^{(k-1)} \text { for } K=1,2, \cdots \tag{1}
\end{equation*}
$$

We can verify that $\quad x^{(k)}=A^{(k)} x^{(0)} \quad$ for $K=1,2, \cdots$
Thus $\quad x^{(k)} \rightarrow \lambda_{1}^{k} \alpha_{1} v_{1} \quad$ as $k \rightarrow \infty$
Since the sequence in equation (1) converges to zero if $\left|\lambda_{1}\right| \prec 1$ and diverges if $\quad\left|\lambda_{1}\right| \succ 1$
Equation (1) may not be a practical sequence to compute the $x^{(k)}$ dominant eigenvalue. $x^{(k)}$
It is desirable to keep $x^{(k)}$ within computational limits by scaling This can be done by dividing $\left\|x^{(k)}\right\|_{x}$ by its absolute largest at each step. Let $x^{(0)}$ be an initial guess. Then define component which is denoted by

$$
Z^{(0)}=\frac{x^{(0)}}{\left\|x^{(0)}\right\|_{x}} \text { compute } x^{(1)}=A z^{(0)} \quad \text { Then }
$$

define $Z^{(1)}=\frac{x^{(1)}}{\left\|x^{(1)}\right\|_{x}}$ and continue we obtain

$$
\begin{cases}Z^{(k)}=x^{(k)} /\left\|x^{(k)}\right\|_{x} & \ldots(2) \tag{2}\\ x^{(k+)}=A z^{(k)} \quad \text { for } \quad k=0,1, \cdots\end{cases}
$$

Since $\quad V_{1}, V_{2}, \cdots, V_{N}$ are linearly independent eignvectors we express
$Z^{(0)}$ as $Z^{(0)}=\beta_{1} v_{1}+\beta_{2} v_{2}+\cdots+\beta_{N} v_{N}$
Where $\beta_{1}, \beta_{2}, \cdots, \beta_{N}$ are constants, we compute

$$
x^{(1)}=A z^{(0)} \quad \text { and } \quad z^{(1)}=x^{(1)} /\left\|x^{(1)}\right\|_{x}=A z^{(0)} /\left\|A z^{(0)}\right\|_{x}
$$

Similarly

$$
Z^{(k)}=\frac{A^{k} z^{(0)}}{\left\|A^{k} Z^{(0)}\right\|_{x}}=\frac{\lambda_{1}^{k}}{\left\|A^{k} Z^{(0)}\right\|_{x}}\left\{\beta_{1} v_{1}+\beta_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} v_{2}+\cdots+\beta_{N}\left(\frac{\lambda_{N}}{\lambda_{1}}\right)^{k} v_{N}\right\}
$$

as $k \rightarrow \infty \quad \cdots(3)$

$$
Z^{(k)} \rightarrow \frac{\beta_{1} v_{1}}{\left\|A^{k} Z^{(0)}\right\|_{x}} \lambda_{1}^{k} \cdots(4)
$$

Multiplying equation (3) by A yields

$$
\begin{aligned}
x^{(k+1)} & =A z^{(k)} \\
& =\frac{\lambda_{1}^{(K+1)}}{\left\|A^{k} Z^{(0)}\right\|_{x}}\left\{\beta_{1} v_{1}+\beta_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k+1} v_{2}+\cdots+\beta_{N}\left(\frac{\lambda_{N}}{\lambda_{1}}\right)^{k+1} v_{N}\right\}
\end{aligned}
$$

$$
\text { Ask } \rightarrow \infty
$$

$$
\begin{equation*}
x^{(k+1)} \rightarrow \frac{\beta_{1} v_{1}}{\left\|A^{k} Z^{(0)}\right\|_{x}} \lambda_{1}^{k+1}=\lambda_{1}\left(\frac{\beta_{1} v_{1}}{\left\|A^{k} Z^{(0)}\right\|_{x}}\right) \lambda_{1}^{k} \cdots \cdots(\tag{5}
\end{equation*}
$$

Using equation (4) in (5) we get $\quad x^{(k+1)} \rightarrow \lambda_{1} Z^{(k)}$ for large K , we have $\quad x^{(k+1)}=A Z^{(k)}=\lambda_{1} Z^{(k)}$
Multiplying by $\left(Z^{(k)}\right)^{\prime}$ we get

$$
\lambda_{1}=\frac{\left(z^{(k)}\right)^{\prime}\left(A z^{(k)}\right)}{\left(z^{(k)}\right)^{\prime} z^{(k)}}
$$

Denoting

$$
\begin{equation*}
\lambda_{1}^{(k)}=\frac{\left(z^{(k)}\right)^{\prime}\left(A z^{(k)}\right)}{\left(z^{(k)}\right)^{\prime} z^{(k)}} \quad \text { for } \quad k=0,1, \cdots \tag{6}
\end{equation*}
$$

We have

$$
\lambda_{1}^{(k)} \rightarrow \lambda_{1} \text { as } k \rightarrow \infty
$$

It follows that the convergence of $z^{(k)}$ to scalar multiple of v_{1}
Depends upon how fast the ratios
$\left(\lambda_{i} / \lambda_{1}\right)^{k}$ for $i=2,3, \cdots, N$ go to zero. we combin equ (2) and (6) to get

$$
\left.\begin{array}{l}
\text { 1) } z^{(k)}=x^{(k)} /\left\|x^{(k)}\right\|_{x} \\
\text { 2) } x^{(k+1)}=A z^{(k)} \\
\text { 3) } \lambda_{1}^{(k+1)}=\left(z^{(k)}\right)^{1} x^{(k+1)} /\left(z^{(k)}\right) z^{(k)}
\end{array}\right\}
$$

(7) for $k=0,1, \ldots \ldots$.
then as $k \rightarrow \infty, \quad \lambda_{1}^{(k+1)} \rightarrow \lambda_{1}$
and $\quad z^{(k)} \rightarrow v_{1}$

